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Abstract
The Hamiltonian structure of variational problems defined by the natural basis
Li

jk of diff M-invariant Lagrangians on the 1-jet bundle of linear frames of a
m-dimensional manifold M is described.

Diffeomorphism invariance on J 1(FM) and its infinitesimal counterpart,
i.e., invariance under the natural representation of vector fields of M , are
analysed. The Lagrangians Li

jk are proved to be the basic tools required to
factor diff M × G-invariance into diff M-invariance and G-invariance. The
densities �i

jk = Li
jkθ

1 ∧ · · · ∧ θm, where the θ i are the components of the
canonical form, are shown to define two types of variational problem according
to whether i /∈ {j, k} or i ∈ {j, k}. The field equations for their extremals are
deduced. These equations are examples of underdetermined non-linear systems
of partial differential equations. Extremals defining a Lie algebra structure are
characterized.

The functions in the real linear space spanned by Li
jk are the only

Lagrangians on FM admitting a Hamiltonian formalism of order zero.
Infinitesimal symmetries and Noether invariants of the densities �i

jk are studied
in detail. In particular, it is proved that the Noether invariant of every vertical
symmetry vanishes. Hence only the horizontal symmetries appear in the
Hamiltonian structure. The equations of the Jacobi fields along an extremal
are explicitly obtained.

The pre-symplectic structure attached to �i
jk is defined to be an alternate

bilinear map (ω2)s on the space of Jacobi fields along an extremal s with values
in closed (m − 1)-forms on M and its kernel is related to vertical infinitesimal
symmetries of the Lagrangian. For m = 3, 4, the equations of the extremals are
integrated explicitly; we thus obtain normal forms, which, when transformed
by an arbitrary diffeomorphism, yield the general solution to the field equations.
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1. Introduction

Let π :FM → M be the bundle of linear frames of a m-dimensional manifold M . We define
1
2m

2(m−1) Lagrangians Li
jk as follows: Li

jk(j
1
x s) = ωi([Xj,Xk]x), where s = (X1, . . . , Xm)

is a linear frame, i.e., a local section of π , and (ω1, . . . , ωm) is its dual coframe; for the
details, see section 2.2 below. The purpose of the present paper is to describe the Hamiltonian
structure of the variational problems defined by the densities �i

jk = Li
jkθ

1 ∧ · · · ∧ θm, where
the θ i are the components of the canonical form on FM . The fundamental property of such
Lagrangians is that they generate, under composition with differentiable functions and the
total derivative, the ring of diffeomorphism-invariant Lagrangians on the jet bundles of linear
frames. Diffeomorphism invariance is of interest in itself and plays an important role not only
in classical general relativity, but also in supersymmetry and gauge theories [1, 5, 20, 27, 34]
as it allows one to formulate the principle of general covariance for every specific situation.

The formulation of diff M-invariant variational principles on linear frame bundles is well
known in several approaches to gravitation, such as tetrad or vierbein formalism [23, 36],
Einstein–Cartan theory [3] and metric–affine theories (see [9, 12, 15, 17, 33]), and general
relativity as a gauge theory [9, 10, 16, 19, 26]. This formulation is nothing but a translation
to principal-bundle language of the classical ‘anholonomic coordinates’ in Cartan’s moving
frame theory; e.g., see [29, II, sections 9, 12]. The bundle of orthonormal frames is also used,
especially in the 1 + 3 approach (e.g., see [35]), but the former formulation seems to be very
suitable for dealing with a space-time with no preferred geometric decomposition. In any
case, such an approach has the advantage of separating diffeomorphism invariance—a purely
geometric condition—from the invariance under a given specific subgroup G ⊆ GL(m; R).
For a sound analysis showing the distinguished role of the bundle of linear frames in classical
field theory, we refer the reader to [30].

From the structural point of view, the densities �i
jk above present the most elementary

diffeomorphism-invariant variational problems. Hence, although they are too simple to be of
immediate application in field theory, precisely due to their simple properties, they provide
interesting geometric models. In fact, each of the Lagrangians proposed as relativistic models
on the bundle of linear frames can be written as a function of the basic Lagrangians Li

jk ,
as a result of which the Li

jk are used as ‘cornerstones’ of the theory (see [30, 33]); also see
section 2.3 for a discussion of the role that such Lagrangians play in imposing diff M × G-
invariance. We remark that the Lagrangians Li

jk themselves cannot present any G-symmetry,
as they generate the invariance under diff M × {I }, I being the identity matrix.

The outline of the paper is as follows. In sections 2.1, 2.2, we define diff M-invariance
on the 1-jet bundle of the linear frame bundle and its infinitesimal counterpart; i.e., invariance
under the natural representation of vector fields ofM intoFM . Although the two definitions are
essentially equivalent, they are not exactly the same due to some global topological obstructions
on M , although they are essentially equivalent. We thus use the infinitesimal definition of
invariance, as it allows us to employ tools such as vector distributions, involutiveness and
the Frobenius theorem. In section 2.3 we show that the functions Li

jk are the basic objects
required to factor diff M×G-invariance into diff M-invariance and G-invariance. This reveals
the important role of the Li

jk in formulating several relativistic theories based on linear frames
(cf [12, 17, 33]). In section 2.4 we first prove that the densities �i

jk define two types of
variational problem according to whether i /∈ {j, k} or i ∈ {j, k}. If dim M = 2, the density
�1

12 is variationally trivial; hence, we assume dim M � 3. Second, we obtain the field
equations for the extremals of the action functional of �i

jk . The number of equations is much
lower than expected. In fact, as the standard fibre of FM is GL(m; R), the number of Euler–
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Lagrange equations is m2 for such problems, but if i /∈ {j, k} (or i ∈ {j, k}) only 3(m− 2) (or
3(m − 1)) of them are independent. Hence these equations are examples of underdetermined
systems of PDEs (cf [2]), in contrast to overdetermined systems, which play a well-known role
in classical field theory (cf [4]). By using these results we obtain two simple consequences:
(1) integrable linear frames (i.e., with [Xj,Xk] = 0) are the common extremals of all �i

jk; and
(2) the characterization of extremals defining a Lie algebra structure; i.e., the extremals such
that [Xj,Xk] = cijkXi ; see [31] and proposition 2.8 below.

In section 3.1 we prove that the only diff M-invariant Lagrangians whose Poincaré–Cartan
form projects onto FM (i.e., admitting a Hamiltonian formalism of order zero) are those of
the vector space generated by Li

jk . This means that R-linear combinations of Li
jk are the

only invariant Lagrangians having Euler–Lagrange equations of first order, thus providing a
geometric meaning for this basis. In section 3.2 we determine the infinitesimal symmetries
of �i

jk . We first characterize the π -projectable symmetries that are common to all �i
jk as

being the natural lifts to FM of vector fields on M , and we determine the Noether invariants
of such symmetries (theorem 3.2 and propositions 3.5, 3.6). It is a remarkable fact—stated
in theorem 3.7—that the Noether invariant of every π -vertical symmetry vanishes. Hence
only the ‘horizontal’ symmetries appear in the Hamiltonian structure. The equations of the
Jacobi fields along an extremal are explicitly obtained in theorems 3.8, 3.9. Jacobi fields are
thought of as being the tangent space for the ‘manifold’ of solutions at a given extremal. In
section 3.3.2, we deduce conditions for a π -vertical vector field along an extremal s to be
the vertical component of a horizontal symmetry, which, in addition, obliges s to admit a Lie
algebra structure.

In section 3.4 we study the pre-symplectic structure attached to �i
jk . This is defined to

be an alternate bilinear map (ω2)s on the space of Jacobi fields along an extremal s. We
prefer to consider (ω2)s as being a 2-form taking values in the space Zm−1(M) of closed
(m−1)-forms on the ground manifold M , rather than a scalar form defined on a fixed compact
(m − 1)-dimensional domain, as in this way we can work independently of the domain of
integration. In any case, the properties of the scalar pre-symplectic form can be recovered
by simply integrating (ω2)s on a compact domain. The kernel of (ω2)s is then analysed. In
proposition 3.14 we prove that if a Jacobi field X defined along s is an infinitesimal symmetry,
then iX(ω2)s = 0. The converse is true if the linear frame s is integrable, while the outcome
remains open for the non-integrable case. Finally, in section 4, the equations of the extremals
of �i

jk are integrated explicitly for dim M = m = 3, 4, thus leading one to obtain ‘normal
forms’; i.e., transforming these normal forms by an arbitrary diffeomorphism, the general
solution to the field equations is reached. Noether invariants defined by horizontal symmetries
are also calculated in such dimensions.

2. Invariant Lagrangians on FM

2.1. diff M-invariance and X(M)-invariance

A Lagrangian density �m defined on the 1-jet extension J 1(FM) of the linear frame bundle
π :FM → M of an m-dimensional manifold M is said to be diff M-invariant (or X(M)-
invariant) if J 1(φ̃)∗�m = �m, ∀φ ∈ diff M (or LX̃(1)�m = 0, ∀X ∈ X(M)), where φ̃

(or X̃ ∈ X(FM)) is the natural lift of φ (or X) to FM (see [13, VI, sections 1, 2]), and
X̃(1) denotes the 1-jet prolongation of X; e.g., see [6, 8, 24, 28]. If θ = (θ1, . . . , θm) is the
canonical 1-form (see [13, III, section 2, p 118]), then we can write �m = Lθ1 ∧ · · · ∧ θm,
where L ∈ C∞(J 1(FM)) is called the canonical Lagrangian associated with �m. A density
�m is diff M-invariant (or X(M)-invariant) if and only if L ◦ J 1(φ̃) = L, ∀φ ∈ diff M
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(or X̃(1)L = 0, ∀X ∈ X(M)), as θ is both diff M-invariant and X(M)-invariant. Hence
the problem of determining invariant Lagrangian densities is reduced to that of determining
invariant Lagrangian functions.

Throughout the paper, italic indices run from 1 to m. Each coordinate system (xi)

on an open domain U ⊆ M induces a coordinate system (xi, xi
j ) on π−1(U), setting

u = ((∂/∂x1)x, . . . , (∂/∂x
m)x) · (xi

j (u)), x = π(u), and a coordinate system (xi, xi
j , x

i
j,k)

on J 1U . From the local expression

X̃(1) = ui ∂

∂xi
+ xh

j

∂ui

∂xh

∂

∂xi
j

+

(
xh
j

∂2ui

∂xh∂xk
+

(
xh
j,k

∂ui

∂xh
− xi

j,h

∂uh

∂xk

))
∂

∂xi
j,k

(1)

we conclude that a Lagrangian L ∈ C∞(J 1(FM)) is X(M)-invariant if and only if it satisfies
the following conditions:

0 = ∂L
∂xi

(2)

0 = xh
j

∂L
∂xi

j

+ xh
j,k

∂L
∂xi

j,k

− xk
j,i

∂L
∂xk

j,h

(3)

0 = xh
j

∂L
∂xi

j,k

+ xk
j

∂L
∂xi

j,h

. (4)

We denote by Idiff M (or IX(M)) the algebra of diff M-invariant (or X(M)-invariant)
Lagrangian functions on J 1(FM). Obviously Idiff M ⊆ IX(M), and Idiff M = IX(M) except
when M is orientable and admits an orientation-reversing diffeomorphism onto itself, in which
case we have IX(M) = Idiff M×Idiff M , Idiff M being the diagonal of IX(M); see [7] for the details.

Proposition 2.1. If �m is a diff M-invariant Lagrangian density on J 1(FM), s:U → FM is
an extremal of �m and φ ∈ diff U , then the section φ̃ ◦ s ◦ φ−1 is another extremal. In other
words, diff M acts on the set of extremals of a diff M-invariant density.

Proof. Let Ej

i be the m × m matrix (E
j

i )
h
k = δhj δ

i
k , and let εji ∈ V ∗(FM) be the dual basis of

the fundamental vector fields Ej∗
i associated with E

j

i [13, I, section 4]; i.e., εji (E
l∗
k ) = δikδ

l
j . If

M is oriented by a volume form v, then we have �m = Lv, L ∈ C∞(J 1(FM)). Let (U ; xi) be
coordinates such that v = dx1 ∧ · · · ∧ dxm and let E(�m): J 2(FM) → V ∗(FM) ⊗ ∧mT ∗M ,
E(�m) ◦ j 2s = dxi

j ⊗ (j 1s)∗Ej

i (L), be the Euler–Lagrange morphism

Ej

i (L) = (−1)h d

(
∂L

∂x
j

i,h

)
∧ vh +

∂L

∂x
j

i

v vh = dx1 ∧ · · · ∧ d̂xh ∧ · · · ∧ dxm. (5)

By using the formulae θ i = xj
i dxj , where (xj

i) = (xi
j )

−1, and dxi
j = xi

kε
k
j , we

conclude that if L ∈ C∞(J 1(FM)) is the Lagrangian associated with �m, then there exist
globally defined functions E

j

i (L) ∈ C∞(J 2(FM)), E
j

i (L) = det(xa
b )(Ej

k (L)xk
i ), such that

E(�m)(j
2
x s) = E

j

i (L)(j 2
x s)(ε

i
j )s(x) ⊗ (θ1 ∧ · · · ∧ θm)s(x). Therefore, the Euler–Lagrange

equations for �m can globally be written as E
j

i (L) ◦ j 2s = 0. The result now follows from the
functoriality of such functions; namely, E

j

i (L ◦ J 1(φ̃)) = E
j

i (L) ◦ J 2(φ̃), ∀φ ∈ diff M (e.g.,
see [14, XI, section 49] or [18]). In fact, as L is invariant, from the previous formula we obtain
E

j

i (L) ◦ j 2s = E
j

i (L ◦ J 1(φ̃)) ◦ j 2s = E
j

i (L) ◦ J 2(φ̃) ◦ j 2s = E
j

i (L) ◦ j 2(φ̃ ◦ s ◦ φ−1). �



Invariant variational problems on linear frame bundles 2017

2.2. A basis for IX(M)

Let Li
jk: J 1(FM) → R, j < k, be the Lagrangian Li

jk(j
1
x s) = ωi([Xj,Xk])(x), where

s = (X1, . . . , Xm) and (ω1, . . . , ωm) denotes the dual coframe. We remark that the definition
makes sense as the value ωi([Xj,Xk])(x) only depends on j 1

x s. Moreover, from the very
definition we have [Xj,Xk]x = Li

jk(j
1
x s)(Xi)x . The local expression for Li

jk is

Li
jk = (xh

j x
l
k,h − xh

k x
l
j,h)xl

i . (6)

We claim that Li
jk is diff M-invariant. In fact, for every φ ∈ diff M we have J 1(φ̃)(j 1

x s) =
j 1
φ(x)(φ̃ ◦ s ◦ φ−1), where φ̃ ◦ s ◦ φ−1 = (φ · X1, . . . , φ · Xm). Hence

[φ · Xj, φ · Xk]φ(x) = (Li
jk ◦ J 1(φ̃))(j 1

x s)(φ · Xi)φ(x)

and, taking into account that φ · [X, Y ] = [φ · X,φ · Y ], we have

φ∗([Xj,Xk]x) = (Li
jk ◦ J 1(φ̃))(j 1

x s)φ∗(Xi)x = φ∗((Li
jk ◦ J 1(φ̃))(j 1

x s)(Xi)x)

which implies (Li
jk ◦ J 1(φ̃))(j 1

x s) = Li
jk(j

1
x s), as φ∗ is injective.

The Lagrangians Li
jk are functionally independent and every L ∈ IX(M) can be written

locally as a differentiable function of this system (see [7]).

2.3. G-invariance and teleparallelism theory

Let (vi) be a basis of R
m with dual basis (vi). The Lagrangians Li

jk induce a natural map in
the space of torsions; namely,

p: J 1(FM) →
2∧

V ∗ ⊗ V

p(j 1
x s) = Li

jk(j
1
x s)v

j ∧ vk ⊗ vi

where V = R
m. Note that Li

jk(j
1
x s) are none other than the components of the opposite to the

torsion tensor of the teleparallelism connection of the given linear frame (cf [33, section 2]);
i.e., the connection parallelizing the vector fields X1, . . . , Xm; i.e.,

∇∂/∂xhXj = 0. (7)

The full linear group GL(m; R) acts on J 1(FM) by setting j 1
x s · A = j 1

x (RA ◦ s), where RA

denotes the right translation by the matrix A ∈ GL(m; R), and it also acts on the space of
torsions by the natural tensorial representation; i.e., (t · A)(x, y) = A−1(t (A(x), A(y))) for
every t ∈ ∧2V ∗ ⊗ V . Then, it is straightforward to prove that p is equivariant: precisely,
p(j 1

x s · A) = p(j 1
x s) · A.

Let G ⊆ GL(m; R) be a Lie subgroup. Several theories of gravitation, such as metric-
teleparallel models (e.g., see [9,10,15–17,23]), are based on diff M×G-invariant Lagrangians
on J 1(FM) for distinct choices of the group G; in particular, for G = GL+(m; R), SL(m; R)

and O(k,m− k). As (Li
jk) is a basis for diff M-invariant Lagrangians, every diff M-invariant

Lagrangian L can be written as L = F(L1
12, . . . ,Li

jk, . . . ,Lm
m−1,m) for a differentiable function

F on ∧2V ∗ ⊗ V . Since p is surjective, L is G-invariant if and only if F is. Hence the
problem of determining diff M × G-invariant Lagrangians reduces to that of determining
the invariant functions on the space of torsions under the action of the group G, which,
essentially, is a question of algebraic nature because G-invariant functions admit an algebraic
basis. For example, as the group GL+(m; R) is connected, a function F ∈ C∞(∧2V ∗ ⊗ V )

is invariant if and only if it is infinitesimally invariant. If (ui
jk) denote the coordinates in the
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basis vj ∧ vk ⊗ vi , then it is readily checked that invariance under the infinitesimal linear
representation of GL+(m; R) is given by the following system of m2 PDEs:

ur
ht

∂F

∂ur
jt

+ ur
sh

∂F

∂ur
sj

− u
j
st

∂F

∂uh
st

= 0. (8)

As these equations are independent and constitute an involutive system, by simply applying
the Frobenius theorem we conclude that the number of invariant functions is, in this case,
equal to 1

2m
2(m − 1) − m2 = 1

2m
2(m − 3) for m � 4. Specific examples can be found

in [30, section 5], [31, sections 1.1–1.3], [33, sections 2 and 3] for different choices of the
function F . The other subgroups can be dealt with similarly.

The previous procedure can be inverted: first we can require GL(m; R)-invariance and
then we require diff M-invariance. We know that GL(m; R)-invariant functions on J 1(FM)

are the functions on the quotient bundle J 1(FM)/GL(m; R), which can be identified with the
bundle of linear connectionsC(M) ofM . In fact, by assigning its associated connection to each
linear frame, say j 1

x s �→ ∇x , we obtain a projection p: J 1(FM) → C(M). If Xj = f i
j ∂/∂x

i ,
then by imposing the equations (7) we obtain the following relations for the local symbols of
the connection: 3k

hif
i
j = −∂f k

j /∂x
h. Denoting by (xi, A

j

kl) the standard coordinates on the
bundle of connections, we conclude that the equations for p are p∗(Ak

hr) = −xr
j xk

j,h. From
these expressions it is readily checked that the fibres of p coincide with the orbits of GL(m; R).
This means that two jets j 1

x s, j 1
x s

′ are GL(m; R)-equivalent if and only if they define the same
connection at x ∈ M . Moreover, we have a natural map τ :C(M) → ∧2T ∗M ⊗ TM which
associates a torsion tensor with each linear connection. If (xi, t

j

kl) are the natural coordinates
on ∧2T ∗M ⊗ TM , then the equations of the map τ are the following: τ ∗(t ijk) = Ai

jk − Ai
kj ,

j < k. We claim that the following diagram commutes:

J 1(FM)
q−→ C(M)

(π1
0 ,p) ↓ ↓ τ

FM ×∧2
V ∗ ⊗ V

6−→ ∧2
T ∗M ⊗ TM

where 6 maps the pair (u, λi
jkv

j ∧vk ⊗vi) onto the tensor whose coordinates are the scalars λi
jk

in the frame u. Then, commutativity follows from the standard construction of the associated
bundle (e.g., see [13, I, section 5]). In addition, the projections q and τ are equivariant
with respect to the natural representations of diffeomorphisms on J 1(FM), C(M), and
∧2T ∗M ⊗ TM , respectively. Hence we conclude that the problem of computing GL(m; R)-
invariants on the vector space ∧2V ∗ ⊗ V is equivalent to computing diff M-invariants
on the bundle of torsions ∧2T ∗M ⊗ TM . In fact, as a computation shows, a function
F ∈ C∞(∧2T ∗M ⊗ TM) is infinitesimally diff M-invariant if and only if the following
system holds:

∂F

∂xi
= 0

t rht
∂F

∂trj t
+ t rsh

∂F

∂trsj
− t

j
st

∂F

∂thst
= 0.

Note that this system is exactly equivalent to the system (8).
Finally, we also remark that the functions Li

jk themselves cannot be invariant under any
proper subgroup because they constitute a basis for the invariance under diff M ×{I }, I being
the identity matrix.
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2.4. Extremals of Li
jk

Proposition 2.2 (cf [25]). Let �i
jk = Li

jkθ
1 ∧ · · · ∧ θm, where Li

jk are the Lagrangians of the
formula (6). The variational problems defined by �i

jk , i /∈ {j, k}, are structurally equal to
each other and also those defined by �i

jk , i ∈ {j, k}, are structurally the same. Therefore,
the densities �i

jk define two types of variational problem according to whether i /∈ {j, k} or
i ∈ {j, k}. If dim M = 2, the density �1

12 = L1
12θ

1 ∧ θ2 is variationally trivial. Hence, in
what follows we assume dim M � 3.
Proof. Let us consider the case i /∈ {j, k}. The other case is dealt with similarly. Let I be
the set {(i, j, k)|j < k, i /∈ {j, k}}. Given two systems of indices (i, j, k), (a, b, c) ∈ I , there
exists σ ∈ perm {1, . . . , m} such that σ(i) = a, σ(j) = b, σ(k) = c. Let 9σ ∈ diff FM

be defined by 9σ(X1, . . . , Xm) = (Xσ(1), . . . , Xσ(m)). Then, 9σ−1 transforms bijectively the
extremals of �i

jk onto those of �a
bc: if s is an extremal of �i

jk defined on an m-dimensional
compact submanifold with boundary N ⊆ M , then 9σ−1 ◦ s is an extremal of �a

bc. In fact, if
St is a one-parameter variation of 9σ−1 ◦ s, then 9σ ◦ St is a one-parameter variation of s, and
taking into account that 9∗

σ θ
i = xσ(j)

i dxj , we have

0 = d

dt

∣∣∣∣
t=0

∫
N

(j 1(9σ ◦ St ))
∗�i

jk

= d

dt

∣∣∣∣
t=0

∫
N

(j 1St )
∗ ◦ (J 19σ)

∗�i
jk

= d

dt

∣∣∣∣
t=0

∫
N

(j 1St )
∗((Li

jk ◦ J 19σ)9
∗
σ θ

1 ∧ · · · ∧ 9∗
σ θ

m)

= ε(σ )
d

dt

∣∣∣∣
t=0

∫
N

(j 1St )
∗�a

bc

where ε(σ ) denotes the sign of σ , thus finishing the proof. �
Theorem 2.3. The section s = (X1, . . . , Xm) of FM with dual coframe (ω1, . . . , ωm) is an
extremal of �1

23 if and only if the following 3(m − 2) equations hold:

(a) dω1 ∧ ω1 ∧ ω4 ∧ · · · ∧
(i)

ωj ∧ · · · ∧ ωm = 0 4 � i � m j = 2, 3

(b) ωj ∧ d(ω1 ∧ ω4 ∧ · · · ∧ ωm) + dω1 ∧ ωj ∧ ω4 ∧ · · · ∧ ωm = 0 j = 2, 3

(c) dωj ∧ ω1 ∧ ω4 ∧ · · · ∧ ωm = 0 j �= 2, 3
Proof. If s:N → FM is a section, then (j 1s)∗�1

23 = dω1 ∧ ω1 ∧ ω4 ∧ · · · ∧ ωm. Let s be an
extremal of �1

23. Let Ej

i be as in the proof of proposition 2.1. Let St (x) = s(x) exp(tϕ(x)Ej

i ),
|t | < ε, ϕ ∈ C∞(M), be a one-parameter variation of s with supϕ ⊂ N \ ∂N . We have

exp(tϕ(x)Ej

i ) =
{
I + tϕ(x)E

j

i i �= j

I + (etϕ(x) − 1)Ei
i i = j .

The dual coframe of St = (Xt
1, . . . , X

t
m) is (ω1

t , . . . , ω
m
t ) = (ω1, . . . , ωm) · exp(−tϕEi

j ),

where ωl
t = (δlk − tϕ(Ei

j )
l
k)ω

k = (δlk − tϕδ
j

k δ
l
i )ω

k = ωl − tϕδliω
j for i �= j . Therefore

d

dt

∣∣∣∣
t=0

∫
N

(j 1St )
∗�1

23 = d

dt

∣∣∣∣
t=0

∫
N

dω1
t ∧ ω1

t ∧ ω4
t ∧ · · · ∧ ωm

t

= −
∫
N

[d(ϕδ1
i ω

j ) ∧ ω1 + ϕδ1
i dω1 ∧ ωj ] ∧ ω4 ∧ · · · ∧ ωm

−
m∑

k=4

δki

∫
N

ϕ dω1 ∧ ω1 ∧ ω4 ∧ · · · ∧
(k)

ωj ∧ · · · ∧ ωm.
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Taking into account that supϕ ⊂ N \ ∂N , from Stokes’s theorem we have∫
N

d(ϕδ1
i ω

j ) ∧ ω1 ∧ ω4 ∧ · · · ∧ ωm =
∫
N

ϕδ1
i ω

j ∧ d(ω1 ∧ ω4 ∧ · · · ∧ ωm).

Since s is an extremal, for every ϕ ∈ C∞(M) we obtain

0 =
∫
N

ϕ

[
δ1
i ω

j ∧ d(ω1 ∧ ω4 ∧ · · · ∧ ωm) + δ1
i dω1 ∧ ωj ∧ ω4 ∧ · · · ∧ ωm

+
m∑

k=4

δki dω1 ∧ ω1 ∧ ω4 ∧ · · · ∧
k)

ωj ∧ · · · ∧ ωm

]
.

By applying the fundamental lemma of the calculus of variations, for i = 1, j = 2, 3 (or
j �= 2, 3) we obtain (b) (or (c)). For i = 2, 3, or 4 � i � m, j �= 2, 3 the previous
equation is trivial and for 4 � i � m, j = 2, 3 we obtain (a). Conversely, assume s

satisfies (a)–(c). Let S be a one-parameter variation of s on N . Then, for |t | < ε we have
two linear frames St (x) = S(t, x) and s(x) at x ∈ N . Therefore, there exists a unique
A: (−ε, ε)×N → GL(m; R), A = (ai

j ), such that S(t, x) = s(x) ·A(t, x) with A(0, x) = I ,
∀x ∈ N ; A(t, x) = I , ∀x ∈ M \ N . Hence, A(t, x) = I + t∂A/∂t (0, x) + t2B(t, x),
B(t, x) being an m×m matrix. Let ϕi

j (x) be the entries of the matrix ∂A/∂t (0, x). Then, the
dual coframe of (Xt

1, . . . , X
t
m) = (X1, . . . , Xm) · A is (ω1

t , ω
2
t , . . . , ω

m
t ), ωl

t = aj
lωj , where

(aj
l) = A−1. Accordingly, we have

∂

∂t

∣∣∣∣
t=0

(j 1St )
∗�1

23 = ∂

∂t

∣∣∣∣
t=0

(dω1
t ∧ ω1

t ∧ ω4
t ∧ · · · ∧ ωm

t )

=
(

d

(
∂aj

1

∂t

∣∣∣∣
t=0

ωj

)
∧ ω1 + dω1 ∧ ∂aj

1

∂t

∣∣∣∣
t=0

ωj

)
∧ ω4 ∧ · · · ∧ ωm

+
m∑

k=4

dω1 ∧ ω1 ∧ ω4 ∧ · · · ∧

k)︷ ︸︸ ︷
∂aj

k

∂t

∣∣∣∣
t=0

ωj ∧ · · · ∧ ωm.

From ah
k aj

k = δhj we obtain (∂aj
h/∂t)(0, x) = −(∂ah

j /∂t)(0, x) = −ϕh
j (x). Hence, the

equation above yields

−[d(ϕ1
j ω

j ) ∧ ω1 + ϕ1
j dω1 ∧ ωj ] ∧ ω4 ∧ · · · ∧ ωm

−
m∑

k=4

ϕk
j dω1 ∧ ω1 ∧ ω4 ∧ · · · ∧

k)

ωj ∧ · · · ∧ ωm

= − dϕ1
j ∧ ωj ∧ ω1 ∧ ω4 ∧ · · · ∧ ωm︸ ︷︷ ︸

=0, j �=2,3

−ϕ1
j dωj ∧ ω1 ∧ ω4 ∧ · · · ∧ ωm︸ ︷︷ ︸

(c)=0, j �=2,3

− ϕ1
j dω1 ∧ ωj ∧ ω4 ∧ · · · ∧ ωm︸ ︷︷ ︸

=0, j �=2,3

−
m∑

k=4

ϕk
j dω1 ∧ ω1 ∧ ω4 ∧ · · · ∧

k)

ωj ∧ · · · ∧ ωm︸ ︷︷ ︸
=0, j �=2,3

= −
∑
j=2,3

(
d(ϕ1

j ω
j ∧ ω1 ∧ ω4 ∧ · · · ∧ ωm)

+ ϕ1
j {ωj ∧ d(ω1 ∧ ω4 ∧ · · · ∧ ωm) + dω1 ∧ ωj ∧ ω4 ∧ · · · ∧ ωm︸ ︷︷ ︸}

(b)=0
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+
m∑

k=4

ϕk
j dω1 ∧ ω1 ∧ ω4 ∧ · · · ∧

k)

ωj ∧ · · · ∧ ωm︸ ︷︷ ︸
(a)=0

)
= −

∑
j=2,3

d(ϕ1
j ω

j ∧ ω1 ∧ ω4 ∧ · · · ∧ ωm).

Since supϕ1
j ⊂ N \ ∂N , from Stokes’s theorem we have

d

dt

∣∣∣∣
t=0

∫
N

((j 1St )
∗�1

23) = −
∫
∂N

ϕ1
j ω

j ∧ ω1 ∧ ω4 ∧ · · · ∧ ωm = 0

which completes the proof. �

Corollary 2.4. A section s = (X1, . . . , Xm) of FM is an extremal of �1
23 if and only if the

following 3(m − 2) equations hold:

ω1([Xj,Xi]) = 0 4 � i � m, j = 2, 3

2ω1([Xj,X1]) +
m∑
l=4

ωl([Xj,Xl]) = 0 j = 2, 3

ωj([X2, X3]) = 0 j �= 2, 3.

Proof. Since dω1 ∧ ω1 ∧ ω4 ∧ · · · ∧
i)

ω2 ∧ · · · ∧ ωm = −ω1([X3, Xi])ω1 ∧ · · · ∧ ωm, from
(a) in theorem 2.3 we obtain the first equation above for j = 3. In the same way, we obtain
the rest of the equations. �

Let (U ; xi) be a coordinate system on the domain of a linear frame s = (X1, . . . , Xm),
such that Xj = f i

j ∂/∂x
i , f i

j ∈ C∞(U). Then, s is an extremal of �1
23 if and only if:(

f k
j

∂f h
i

∂xk
− f k

i

∂f h
j

∂xk

)
fh

1 = 0 4 � i � m, j = 2, 3(
f k

1

∂f h
j

∂xk
− f k

j

∂f h
1

∂xk

)
fh

1 +
m∑
l=4

(
f k
l

∂f h
j

∂xk
− f k

j

∂f h
l

∂xk

)
fh

l = 0 j = 2, 3(
f k

2

∂f h
3

∂xk
− f k

3
∂f h

2

∂xk

)
fh

j = 0 j �= 2, 3.

(9)

Similarly, we have

Theorem 2.5. A section s = (X1, . . . , Xm) of FM is an extremal of �1
12 if and only if the

following 3(m − 1) equations hold:

(a) dω1 ∧ ω3 ∧ ω4 ∧ · · · ∧
(i)

ωj ∧ · · · ∧ ωm = 0 3 � i � m, j = 1, 2

(b) ωj ∧ d(ω3 ∧ ω4 ∧ · · · ∧ ωm) = 0 j = 1, 2

(c) dωj ∧ ω3 ∧ ω4 ∧ · · · ∧ ωm = 0 j �= 2.

Corollary 2.6. A section s = (X1, . . . , Xm) of FM is an extremal of �1
12 if and only if the

following 3(m − 1) equations hold:

ω1([Xj,Xi]) = 0 3 � i � m, j = 1, 2
m∑
l=3

ωl([Xj,Xl]) = 0 j = 1, 2

ωj([X1, X2]) = 0 j �= 2.
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Let (U ; xi) be a coordinate system on the domain of a linear frame s = (X1, . . . , Xm),
such that Xj = f i

j ∂/∂x
i , f i

j ∈ C∞(U). Then, s is an extremal of �1
12 if and only if:(

f k
j

∂f h
i

∂xk
− f k

i

∂f h
j

∂xk

)
fh

1 = 0 3 � i � m, j = 1, 2

m∑
l=3

(
f k
l

∂f h
j

∂xk
− f k

j

∂f h
l

∂xk

)
fh

l = 0 j = 1, 2(
f k

2
∂f h

1

∂xk
− f k

1
∂f h

2

∂xk

)
fh

j = 0 j �= 2.

(10)

By using the proof of proposition 2.2, from the corollaries 2.4, 2.6 we obtain the extremals of
�i

jk: for i /∈ {j, k}, we have

ωi([Xa,Xb]) = 0 a �= i, j, k, b = j, k

ωi([Xb,Xi]) +
∑
r �=j,k

ωr([Xb,Xr ]) = 0 b = j, k

ωb([Xj,Xk]) = 0 b �= j, k

(11)

and for i ∈ {j, k},
ωi([Xa,Xb]) = 0 a �= i, j, b = i, j∑
r �=i,j

ωr([Xb,Xr ]) = 0 b = i, j

ωb([Xi,Xj ]) = 0 b �= j.

(12)

Proposition 2.7. A frame s = (X1, . . . , Xm):U → FM is an extremal of all Lagrangian
densities �i

jk if and only if for every x0 ∈ U there exists a coordinate system (U ; xi) on M

such that Xi |U = ∂/∂xi |U .

Proof. From the equations (11), (12) it follows that (∂/∂x1, . . . , ∂/∂xm) is a common extremal
of the Lagrangian densities �i

jk . For the converse it is enough to prove [Xi,Xj ] = 0. Let us
fix a pair of indices i < j , and let us set χa

bc = La
bc ◦ j 1s = ωa([Xb,Xc]). If s is an extremal

of �r
ri , r < i, then the third equation in (12) can be rewritten as 0 = χr

ri = −χr
ir . Similarly,

the second equation in (12) for �i
ij yields

0 =
∑
r �=i,j

χr
ir =

∑
i<r, r �=i,j

χr
ir +

∑
i>r, r �=i,j

χr
ir =

∑
i<r, r �=i,j

χr
ir . (13)

Therefore, for each index j > i, we obtain

j = i + 1 χi+2
i,i+2 +χi+3

i,i+3 + · · · + χm−1
i,m−1 + χm

i,m = 0
j = i + 2 χi+1

i,i+1 +χi+3
i,i+3 + · · · + χm−1

i,m−1 + χm
i,m = 0

...
...

j = m χi+1
i,i+1+ χi+2

i,i+2 +χi+3
i,i+3 + · · · + χm−1

i,m−1 = 0

where, by subtracting the first equation from the second one, we deduce χi+1
i,i+1 = χi+2

i,i+2. By
repeating the same process successively we have χi+1

i,i+1 = χi+2
i,i+2 = χi+3

i,i+3 = · · · = χm
i,m. Hence

equation (13) reduces to (m − i − 1)χr
ir = 0, for all r > i. Thus

χr
ir = 0 for all i < m − 1, r > i. (14)

As s is an extremal of �m−3
m−2,m−1, from the second equation in (11) and (14) we conclude that

0 = χm−3
m−1,m−3 +

∑
r �=m−1,m−2

χr
m−1,r = χm

m−1,m

which completes the proof. �
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The number of the Euler–Lagrange equations for the extremals of a Lagrangian on FM

is m2, a number much greater than that of the equations (11), (12) defining the extremals of
the densities �i

jk . We end this section by showing that these equations are really equivalent to
the Euler–Lagrange equations of such densities. According to proposition 2.2 we only need
to do this for �1

23, �
1
12. We give the proof for �1

23, the other case being similar.
Let (J 1(FU); xi, xi

j , x
i
j,k) be the system induced by (U ; xi). Set L1

23 = L1
23 det(xa

b ).
First we prove that the Euler–Lagrange equations for the extremals of �1

23 can be written as
9k

j ◦ j 1s = 0, where 9k
j : J 1(FU) → R, are the following functions:

9k
j = (−δk3x

i
2,i + δk2x

i
3,i )x

1
j + (δk3x

i
2 − δk2x

i
3)(xq

1xj
r + x1

j xq
r )x

q

r,i

+ (δk2x
l
3,j − δk3x

l
2,j )xl

1 − (xh
2x

l
3,h − xh

3x
l
2,h)(xj

1xl
k + xl

1xj
k). (15)

In fact, the Euler–Lagrange equations of �1
23 are (see the formula (5))

(j 1s)∗Ek
j (L

1
23) = (j 1s)∗

(
(−1)i d

(
∂L1

23

∂x
j

k,i

)
∧ vi +

∂L1
23

∂x
j

k

v

)
= 0. (16)

Taking into account the expression (6) of L1
23, we obtain

Ek
j (L

1
23) = (−1)i d((δk3x

i
2 − δk2x

i
3)xj

1 det(xb
a)) ∧ vi +

∂L1
23

∂x
j

k

v

= F
i,kr
jq ϑq

r ∧ vi + 9k
j det(xb

a)v (17)

for certain functions F
i,kr
jq ∈ C∞(J 1(FU)) where ϑ

q
r = dxq

r − x
q

r,i dxi are the standard
contact forms on J 1(FM) [7, section 1.3]. Hence (j 1s)∗Ek

j (L
1
23) = (9k

j ◦ j 1s) det(fb
a)v,

with s = (X1, . . . , Xm), Xj = f i
j ∂/∂x

i . From (15) it is easily seen that

(9i
j ) · (xi

j ) =



−2L1
23 0 0 0 . . . 0

2L1
31 +

∑m
l=4 Ll

3l 0 −L1
34 −L1

35 . . . −L1
3m

−(2L1
21 +

∑m
l=4 Ll

2l) 0 L1
24 L1

25 . . . L1
2m

−L4
23 0 −L1

23 0 . . . 0

−L5
23 0 0 −L1

23 . . . 0
...

...
...

...
. . .

...

−Lm
23 0 0 0 . . . −L1

23


. (18)

Pulling this equation back along j 1s and taking into account that La
bc ◦ j 1s = ωa([Xb,Xc])

and that the matrix (f i
j ) is invertible from corollary 2.4, we have completed our exposition.

2.5. Extremals with a Lie algebra structure

Let (X1, . . . , Xm) be a linear frame defining a Lie algebra structure; that is, [Xi,Xj ] = chijXh

for certain structure constants chij . These linear frames are of interest by virtue of the third
theorem of Lie (see e.g., [11, II, theorem 7.5]), which states that every Lie algebra can be
obtained in the previous form, and they also seem to be important in field theory [31,33]. Let
us determine the conditions on the structure constants for such a Lie algebra to be an extremal
of �1

23 or �1
12. In fact, from the formulae (11), (12) we have

Proposition 2.8. A linear frame (X1, . . . , Xm) admitting a Lie algebra structure is an extremal
of �i

jk , i /∈ {j, k}, (or �i
ij ) if and only if the structure constants satisfy ciab = 0, a �= i, j, k,

b = j, k; cibi +
∑

r �=j,k c
r
br = 0, b = j, k; cbjk = 0, b �= j, k (or ciab = 0, a �= i, j , b = i, j ;∑

r �=i,j c
r
br = 0, b = i, j ; cbij = 0, b �= j ).
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If m = dim M = 3, then we have:

(i) The linear frame (X1, X2, X3) is an extremal for �i
jk , i /∈ {j, k}, if and only if the vector

space spanned by Xj,Xk is an ideal of the Lie algebra 〈X1, X2, X3〉.
(ii) The linear frame (X1, X2, X3) is an extremal for �i

ij if and only if either Xj is non-central,
and then 〈X1, X2, X3〉 is the direct sum of 〈Xj 〉 and the non-Abelian two-dimensional Lie
algebra, orXj is central, and then 〈X1, X2, X3〉 is the Lie algebra of strictly upper triangular
matrices.

3. Hamiltonian structure

3.1. The Poincaré–Cartan form of �i
jk

The Poincaré–Cartan form of a Lagrangian density Lv on a fibred manifold p:P → M , with
dim P = m + n, is the m-form on J 1P given on a fibred coordinate system (xi, yα, yα

i ),
1 � α � n, by (see [6, 8])

C = (−1)i−1 ∂L

∂yα
i

ϑα ∧ vi + Lv (19)

where ϑα = dyα − yα
i dxi are the standard contact forms (see [7, section 1.3]). Taking

into account (6) and (19), a simple calculation shows that the Poincaré–Cartan form of the
Lagrangian density �i

jk is

Ci
jk = (−1)h−1xr

i det(xb
a)(xh

j dxr
k − xh

k dxr
j ) ∧ vh. (20)

Hence the Poincaré–Cartan form Ci
jk of �i

jk is projectable onto J 0(FM) = FM . Conversely,

Theorem 3.1. The Poincaré–Cartan form C of a X(M)-invariant Lagrangian density �m =
Lθ1 ∧ · · · ∧ θm on J 1(FM) is projectable onto J 0(FM) = FM if and only if there
exist λ, λjk

i ∈ R such that L = λ + λ
jk

i Li
jk .

Proof. From (19) it follows that the Poincaré–Cartan form C is projectable onto FM if
and only if ∂L/∂xi

j and L − xi
j,k∂L/∂xi

j,k project onto FU , U ⊂ M being the open subset
where the coordinates (xi) are defined and L = L det(xb

a). This means that L is an affine
function; i.e., L = f

jk

i xi
j,k + f , with f

jk

i , f ∈ C∞(FU). Hence L = g
jk

i xi
j,k + g, with

g = f det(xa
b ), g

jk

i = f
jk

i det(xa
b ). As L is invariant, from (2) it follows that g, g

jk

i only
depend on xh

l , and from (3), (4) we have

0 = xh
j

(
∂gbc

a

∂xi
j

xa
b,c +

∂g

∂xi
j

)
+ xh

j,kg
jk

i − xk
j,ig

jh

k (21)

0 = xh
j g

jk

i + xk
j g

jh

i . (22)

Furthermore, equation (21) is equivalent to the following two equations:

0 = xh
j

∂gbc
a

∂xi
j

+ δhag
bc
i − δci g

bh
a (23)

0 = xh
j

∂g

∂xi
j

. (24)

From (24) it follows that g = λ ∈ R. Let us fix a frame u0 ∈ Fx0(U), and let us choose
coordinates (xi) centred on x0 such that u0 = ((∂/∂x1)x0 , . . . , (∂/∂x

m)x0). By evaluating
equation (22) at u0, we obtain

ghk
i (u0) + gkh

i (u0) = 0 h � k. (25)
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Multiplying equation (23) by xh
k and summing over the index h, we have

∂gbc
a

∂xi
k

= δci xh
kgbh

a − xa
kgbc

i . (26)

Taking into account that ∂xl
i/∂xa

b = −xa
ixl

b, differentiating (26) r − 1 times and proceeding
by recurrence on r , we can conclude that ∂rgbc

a /∂x
i1
k1
. . . ∂x

ir
kr

is a sum of r!(m + 1) terms of

the form ±δxβ1
α1 . . . xβr

αr g
βγ
α , δ being the Kronecker symbol of some pair of indices. As

|xi
j (u0)| = 1, there exists a compact neighbourhood Q of u0 such that |xi

j (u)| � 2, ∀u ∈ Q.
Hence ∣∣∣∣∣ 1

r!

∂rgbc
a

∂x
i1
k1
. . . ∂x

ir
kr

(u)

∣∣∣∣∣ � 2rM u ∈ Q; M = (m + 1) max
u∈Q

α,β,γ

|gβγ
α (u)|.

Hence gbc
a is of class Cω. Evaluating ∂rgbc

a /∂x
i1
k1
. . . ∂x

ir
kr

at u0, we deduce that each

∂rgbc
a /∂x

i1
k1
. . . ∂x

ir
kr
(u0) is a linear combination of the m2(m − 1)/2 initial values ghk

i (u0)

(see (25)). As gbc
a is analytic, we have g

jk

i = gbc
a (u0)ϕ

a,jk

bc,i or some functions ϕ
a,jk

bc,i .

Hence L = gbc
a (u0)ψ

a
bc + λ, with ψa

bc = ϕ
a,jk

bc,i x
i
j,k , and we conclude that the space of

invariant Lagrangians with projectable Poincaré–Cartan form is a vector space of dimension
�1 + m2(m − 1)/2. As the Lagrangians Li

jk are functionally independent (see section 2.2),
the dimension must be 1 + m2(m − 1)/2 exactly, thus finishing the proof. �

3.2. Symmetries and Noether invariants

Let �m be a Lagrangian density on an arbitrary fibred manifold p:P → M . A p-projectable
vector field Y ∈ X(P ) is said to be an infinitesimal symmetry of �m if LY(1)�m = 0 where Y (1)

is the infinitesimal contact transformation attached to Y (e.g., see [6,8,24,28]). Let us denote
by sym(�m) (or symv(�m)) the Lie algebra of symmetries (or p-vertical symmetries) of �m.
We have a semidirect product sym(�i

jk) = X(M) × symv(�i
jk), with Y �→ (X,Z = Y − X̃),

X being the projection of Y onto M , given by

[(X,Z), (X′, Z′)] = ([X,X′], [Z,Z′] + [X̃, Z′] − [X̃′, Z]).

Moreover, the Noether theorem holds: if Y ∈ sym(�m), then d((j 1s)∗iY (1)C) = 0 for every
extremal s [6, 8]. The (m − 1)-form iY (1)C is called the Noether invariant associated with the
symmetry Y . If Z is another symmetry, we define the Poisson bracket of the two corresponding
Noether invariants by the formula {iY (1)C, iZ(1)C} = i[Y,Z](1)C [6,8,21,22]. Below we determine
the symmetries and Noether invariants of �i

jk .

Theorem 3.2. The only π -projectable vector fields on FM that are infinitesimal symmetries
of every density �i

jk are the natural lifts of vector fields on M; i.e., ∩i,j<ksym(�i
jk) = {X̃|X ∈

X(M)}.
Proof. As LX̃(1)�

i
jk = 0, it suffices to prove that if a π -vertical vector field Y = vi

j ∂/∂x
i
j ,

vi
j ∈ C∞(FM), is a symmetry of all densities �i

jk , then Y = 0; i.e., ∩i,j<ksymv(�i
jk) = 0.

By imposing the symmetry condition, we obtain Y (1)(Li
jk) − Li

jkxl
hvl

h = 0. Substituting
Y (1) = vl

b∂/∂x
l
b + (∂vl

b/∂x
h + xd

e,h∂v
l
b/∂x

d
e )∂/∂x

l
b,h and the local expression for Li

jk (see the
formula (6)) into the previous equation, we obtain the following polynomial of first degree in
the variables xi

j,k whose coefficients are functions of xh, xi
j :

0 = (vh
j x

l
k,h − vh

k x
l
j,h)xl

i − (xh
j x

l
k,h − xh

k x
l
j,h)(xr

ixl
s + xl

ixr
s)vr

s

+

(
∂vl

b

∂xh
+ xd

e,h

∂vl
b

∂xd
e

)
(xh

j δ
b
k − xh

k δ
b
j )xl

i .
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Considering the coefficient of xl
q,h, we conclude that this equation is equivalent to the following

system:

0 = (δ
q

k v
h
j − δ

q

j v
h
k )xl

i − (δ
q

k x
h
j − δ

q

j x
h
k )(xr

ixl
s + xl

ixr
s)vr

s +

(
xh
j

∂vr
k

∂xl
q

− xh
k

∂vr
j

∂xl
q

)
xr

i (27)

0 = xl
i

(
xh
j

∂vl
k

∂xh
− xh

k

∂vl
j

∂xh

)
. (28)

Taking q �= j , k in (27), we obtain (xh
j ∂v

r
k/∂x

l
q − xh

k ∂v
r
j /∂x

l
q)xr

i = 0. Multiplying this
equation by xs

i and by xh
r and summing over the indices i, h, we obtain δrj ∂v

s
k/∂x

l
q =

δrk∂v
s
j /∂x

l
q . As j �= k, we have

∂vs
j

∂xl
q

= 0 for q �= j. (29)

Now, letting q = j in (27) and taking into account (29), we have

−vh
k xl

i + xh
k (xr

ixl
s + xl

ixr
s)vr

s − xh
k

∂vr
j

∂xl
j

xr
i = 0.

Multiplying the equation above by xh
k and summing over h, k, we have

−xh
kvh

k xl
i + (xr

ixl
s + xl

ixr
s)vr

s = ∂vr
j

∂xl
j

xr
i

and multiplying by xa
i and by xl

s and summing over i, l, s, we obtain

va
s = xl

s

∂va
j

∂xl
j

. (30)

Differentiating va
s in (30) with respect to xr

j , j �= s, and taking into account (29), we
deduce 0 = ∂va

s /∂x
r
j = xl

s∂
2va

j /∂x
r
j ∂x

l
j . Hence, from (29) and the equation above, we

conclude that ∂2va
j /∂x

l
j ∂x

r
s = 0. Therefore, the functions ∂va

j /∂x
l
j only depend on xi .

Differentiating (30) with respect to xr
s , we obtain ∂va

s /∂x
r
s = ∂va

j /∂x
r
j . Hence, va

s = ga
l x

l
s

for some functions ga
l ∈ C∞(M). Substituting ga

l x
l
s for va

s in (27) and letting q = j , we
obtain 0 = −xl

igh
t x

t
k + xh

k (xr
ixl

s + xl
ixr

s)gr
t x

t
s − xh

k g
r
l xr

i . Multiplying this equation by xl
i and

summing over i, we have xh
k g

r
r − xt

kg
h
t = 0. Hence gh

t = 0, thus finishing the proof. �
Proposition 3.3. Let (Ei∗

j ) be the global basis of V (FM) associated with the standard basis
(Ei

j ) of gl(m; R). A π -vertical vector field of the form Y = ∑
i,j K

i
jE

i∗
j , Ki

j ∈ C∞(M), is an
infinitesimal symmetry of �1

23 if and only if the following conditions hold:

Kb
2 = Kb

3 = 0 b �= 2, 3
K1

a = 0 a �= 1

2K1
1 +

m∑
r=4

Kr
r = 0.

(31)

Proof. Locally, Y can be written as Y = xi
rK

r
j ∂/∂x

i
j . Since Y is a symmetry, its components

have to satisfy equations (27), (28). From (27) we obtain

xa
1((xc

2K
b
3 − xc

3K
b
2) + xc

r (δ
b
3K

r
2 − δb2K

r
3)) = (δb3x

c
2 − δb2x

c
3)(xs

1xa
r + xa

1xs
r )xs

hK
h
r .

Proceeding as in the proof of theorem 3.2, we obtain the conditions in the statement. �
Similarly, for the density �1

12 the following result can be stated:
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Proposition 3.4. A π -vertical vector field of the form Y = ∑
i,j K

i
jE

i∗
j , Ki

j ∈ C∞(M), is an
infinitesimal symmetry of �1

12 if and only if the following conditions hold:

Kb
1 = Kb

2 = 0 b �= 1, 2
K1

a = 0
m∑

r=3

Kr
r = 0.

(32)

We remark that the vector fields Y in proposition 3.3 are the sections of the vector bundle
associated with FM and the trivial representation of GL(m; R) on gl(m; R). Recall that the
vector bundle associated with FM and the adjoint representation of GL(m; R) on gl(m; R) is
the adjoint bundle; that is, the bundle whose sections are the π -vertical GL(m; R)-invariant
vector fields on FM , but the only section of the adjoint bundle defining an infinitesimal
symmetry of the density �i

jk is Y = 0.

Proposition 3.5. If s = (X1, . . . , Xm) is an extremal of �1
23 with dual coframe (ωi), then

s∗(iX̃C
1
23) = ω1 ∧ (i[X3,X]iX2 − i[X2,X]iX3)(ω

1 ∧ · · · ∧ ωm) for every X ∈ X(M). Therefore,
s∗(iX̃C

1
23) = 0 if and only if ω1([X3, X]) = ω1([X2, X]) = 0.

Proof. As in (5), we set vah = dx1 ∧ · · · ∧ d̂xa ∧ · · · ∧ d̂xh ∧ · · · ∧ dxm, a < h. From the
formula (20) and the local expression X̃ = ui∂/∂xi + xh

j ∂u
i/∂xh∂/∂xi

j , ui ∈ C∞(U), we
obtain

iX̃C
1
23 = (−1)h−1 det(xb

a)xr
1

(
(xh

2x
s
3 − xh

3x
s
2)

∂ur

∂xs
vh

+ (xh
2 dxr

3 − xh
3 dxr

2) ∧
(∑

a<h

(−1)a−1uavah +
∑
a>h

(−1)auavha

))
.

Let (U ; xi) be a coordinate system on the domain of the linear frame s so that Xj = f i
j ∂/∂x

i ,
f i
j ∈ C∞(U). We have

s∗(iX̃C
1
23) = (−1)h−1 det(fb

a)

(
fr

1(f h
2 f s

3 − f h
3 f s

2 )
∂ur

∂xs

− uafr
1

(
f h

2

∂f r
3

∂xa
− f h

3
∂f r

2

∂xa

)
+ uhfr

1

(
f a

2

∂f r
3

∂xa
− f a

3
∂f r

2

∂xa

)
︸ ︷︷ ︸

(9)=0

)
vh

= (−1)h−1 det(fb
a)fr

1

(
f h

2

(
f s

3
∂ur

∂xs
− ua ∂f

r
3

∂xa

)
− f h

3

(
f h

2
∂ur

∂xs
− uh ∂f

r
2

∂xh

))
vh.

As ωk = fh
k dxh, we have

s∗(iX̃C
1
23) = ω1([X3, X])iX2(ω

1 ∧ · · · ∧ ωm) − ω1([X2, X])iX3(ω
1 ∧ · · · ∧ ωm)

= ω1 ∧ (i[X3,X]iX2 − i[X2,X]iX3)(ω
1 ∧ · · · ∧ ωm).

�
Similarly, for the density �1

12 the following result can be stated:

Proposition 3.6. If s = (X1, . . . , Xm) is an extremal of �1
12 with dual coframe (ωi), then

s∗(iX̃C
1
12) = ω1 ∧ (i[X2,X]iX1 − i[X1,X]iX2)(ω

1 ∧ · · · ∧ ωm) for every X ∈ X(M). Therefore,
s∗(iX̃C

1
12) = 0 if and only if ω1([X2, X]) = ω1([X1, X]) = 0.

Theorem 3.7. The Noether invariant iYC1
23 (or iYC

1
12) of a π -vertical symmetry of �1

23 (or
�1

12) is zero.
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Proof. We only consider the case of the Noether invariant of a π -vertical symmetry of �1
23;

the other case is dealt with similarly. Proceeding as in the proof of theorem 3.2, we conclude
that a π -vertical vector field Y = vr

q∂/∂x
r
q , vr

q ∈ C∞(FM), is a symmetry of �1
23 if and only

if the functions vr
q satisfy the system (27), (28) for i = 1, j = 2, k = 3. In this case, the

equations (27) can be written as follows:

A
hq

l =
(
xh

2

∂vr
3

∂xl
q

− xh
3
∂vr

2

∂xl
q

)
xr

1 (33)

A
hq

l = −((δ
q

3v
h
2 − δ

q

2v
h
3 )xl

1 − (δ
q

3x
h
2 − δ

q

2x
h
3 )Dl)

Dl = (xr
1xl

s + xl
1xr

s)vr
s .

(34)

Let us fix the indices q, l. In matrix notation, equations (33) read

M ·



∂v1
2/∂x

l
q

∂v1
3/∂x

l
q

...

∂vm
2 /∂xl

q

∂vm
3 /∂xl

q

 =
 A

1q
l

...

A
mq

l

 (35)

where M is an m × 2m matrix of rank 2:

M =
 −x1

1x1
3 x1

1x1
2 · · · −xm

1x1
3 xm

1x1
2

...
...

. . .
...

...

−x1
1xm

3 x1
1xm

2 · · · −xm
1xm

3 xm
1xm

2

 .

Let V ⊂ FM be the dense open subset defined by N = x1
2x

2
3 − x1

3x
2
2 �= 0, x1

1 �= 0. Hence
the first two equations in (35) are linearly independent on V . Therefore, the system (35) is
compatible if and only if each of its m − 2 last equations is a linear combination of the first
two equations; that is,

A
hq

l = λhA
1q
l + µhA

2q
l (36)

with Nλh = xh
2x

2
3 − xh

3x
2
2 , Nµh = xh

3x
1
2 − xh

2x
1
3 . From (34) we have A

hq

l = 0 for q �= 2, 3,
and equations (36) hold automatically. For q = 2, equations (36) read as

0 = N(vh
3xl

1 − xh
3Dl) −

∣∣∣∣ xh
2 x2

2

xh
3 x2

3

∣∣∣∣ (v2
3xl

1 − x2
3Dl) −

∣∣∣∣ x1
2 xh

2

x1
3 xh

3

∣∣∣∣ (v3
3xl

1 − x3
3Dl)

= xl
1

∣∣∣∣∣∣
v1

3 v2
3 vh

3

x1
2 x2

2 xh
2

x1
3 x2

3 xh
3

∣∣∣∣∣∣ .
Hence vh

3 = λhv1
3 + µhv2

3 on V . Similarly for q = 3, we obtain vh
2 = λhv1

2 + µhv2
2 . Taking

into account (20) and that xh
1λh = xh

1µh = 0, we have

iYC
1
23 = (−1)i−1xj

1 det(xβ
α)(xi

2v
j

3 − xi
3v

j

2 )vi

= (−1)i−1xj
1 det(xβ

α)(xi
2(λ

jv1
3 + µjv2

3) − xi
3(λ

jv1
2 + µjv2

2))vi = 0.

�
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3.3. Jacobi fields

3.3.1. Jacobi equations. Let S be the sheaf of extremals of a Lagrangian density �m

on p:P → M; that is, for every open subset U ⊆ M , we denote by S(U) the set of
solutions to the Euler–Lagrange equations of �m, which are defined on U . As is well
known [6,8,28], in the Hamiltonian formalism extremals can be characterized as the solutions
to the Hamilton–Cartan equation; that is, s is an extremal if and only if (j 1s)∗(iY dC) = 0
for all Y ∈ X(J 1P). The Jacobi fields are the solutions to the linearized Hamilton–Cartan
equation. To be precisely, a Jacobi field along an extremal s ∈ S(U) is a p-vertical vector field
defined along s, X ∈ 3(U, s∗VP ), satisfying the Jacobi equation (j 1s)∗(iYLX(1) dC) = 0,
∀Y ∈ X(J 1(p−1U)). In fact, it is readily checked that if St is a one-parameter variation of
s:N → P and St is an extremal for every t , then the infinitesimal variation X of St (i.e.,
X ∈ 3(N, s∗VP ) is defined by Xx equal to the vector at t = 0 tangent to the curve t �→ St (x),
∀x ∈ N ) satisfies the Jacobi equation. Hence we think of the Jacobi fields along s as being
the tangent space at s for the ‘manifold’ S(U) of extremals and accordingly we denote it by
TsS(U).

In the particular case of the bundle of linear frames π :FM → M , a π -vertical vector
field X of FM defined along a linear frame s:U → FM is written as X = ∑

i,j K
i
jE

i∗
j |s ,

Ki
j ∈ C∞(U).

Theorem 3.8. Let s = (X1, . . . , Xm):U → FM be an extremal of �1
23 with dual coframe

(ω1, . . . , ωm). A π -vertical vector field X = ∑
i,j K

i
jE

i∗
j |s of FM defined along s is a Jacobi

field if and only if it satisfies the following system of 3(m − 2) linear differential equations:

0 = XaK
1
i − XiK

1
a + Kh

aω
1([Xh,Xi]) − K1

hω
h([Xa,Xi]) − K1

i ω
1([X1, Xa])

0 = 2(X1K
1
a − XaK

1
1) + XlK

l
a − XaK

l
l + 2(Kh

1ω
1([Xh,Xa]) − Kh

aω
1([Xh,X1])

− K1
hω

h([X1, Xa])) + Kh
l ω

l([Xh,Xa]) − Kh
aω

l([Xh,Xl]) − Kl
hω

h([Xl,Xa])

0 = X2K
j

3 − X3K
j

2 + Kh
2ω

j([Xh,X3])

− Kh
3ω

j([Xh,X2]) − K
j

3ω
3([X2, X3]) − K

j

2ω
2([X2, X3])

where a = 2, 3, 4 � i � m, j �= 2, 3 and 4 � l � m.

Proof. Let s = (X1, . . . , Xm), Xj = f i
j ∂/∂x

i , be an extremal of �1
23 defined on an open

coordinate subset U ⊆ M and let Xx = F i
j (x)∂/∂x

i
j |s(x), x ∈ U , F i

j ∈ C∞(U), be
a π -vertical vector field on FU defined along s. Taking into account that the Poincaré–
Cartan form C1

23 is defined on FM (see the formula (20)), X is a Jacobi field if and only if
(j 1s)∗(i∂/∂xh

i
LX(1) dC1

23) = 0, for all h, i. By using the local expressions for X(1) and ϑk
j , we

obtain LX(1)ϑk
j = 0, and from (17), (20), we have

dC1
23 = ϑ

j

k ∧ Ek
j (L

1
23) = ϑ

j

k ∧ (F
i,kr
jq ϑq

r ∧ vi + 9k
j det(xb

a)v). (37)

Hence, as s is an extremal and thus 9a
b ◦ j 1s = 0 (see (15), (17)), we obtain

(j 1s)∗(i∂/∂xh
i
LX(1) dC1

23) = (j 1s)∗(i∂/∂xh
i
LX(1) [9k

j det(xb
a)ϑ

j

k ∧ v])

= (j 1s)∗(i∂/∂xh
i
(X(1)(9k

j det(xb
a))ϑ

j

k ∧ v))

= [(X(1)(9h
i det(xb

a))) ◦ (j 1s)]v

= [X(1)(9h
i ) ◦ (j 1s)] det(fb

a)v.

Therefore, X is a Jacobi field if and only if X(1)(9h
i ) ◦ (j 1s) = 0. From equation (18), we

have
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(X(1)9i
j ) · (xi

j ) + (9i
j ) · (F i

j )

=



−2X(1)L1
23 0 0 0 . . . 0

X(1)(2L1
31 +

∑m
l=4 Ll

3l) 0 −X(1)L1
34 −X(1)L1

35 . . . −X(1)L1
3m

−X(1)(2L1
21 +

∑m
l=4 Ll

2l) 0 X(1)L1
24 X(1)L1

25 . . . X(1)L1
2m

−X(1)L4
23 0 −X(1)L1

23 0 . . . 0

−X(1)L5
23 0 0 −X(1)L1

23 . . . 0
...

...
...

...
. . .

...

−X(1)Lm
23 0 0 0 . . . −X(1)L1

23


.

Pulling this equation back along j 1s and recalling that the matrix (f i
j ) is invertible, we conclude

that X is a Jacobi field if and only if the following equations hold:

X(1)L1
ij ◦ j 1s = 0 4 � i � m, j = 2, 3

(2X(1)L1
j1 +

m∑
l=4

X(1)Ll
j l) ◦ j 1s = 0 j = 2, 3

X(1)Lj

23 ◦ j 1s = 0 j �= 2, 3.

(38)

As Ek∗
l |s = f i

k ∂/∂x
i
l |s , we have F i

l = f i
hK

h
l . By using the formula (6), we obtain

(X(1)Li
jk) ◦ j 1s = XjK

i
k − XkK

i
j + Kh

jω
i([Xh,Xk])

− Kh
kω

i([Xh,Xj ]) − Ki
hω

h([Xj,Xk]) (39)

and the result follows from (38). �
Proceeding similarly for �1

12, we obtain

Theorem 3.9. Let s be an extremal of �1
12. A π -vertical vector field X of FM defined along

s is a Jacobi field if and only if it satisfies the following equations:

0 = XaK
1
i − XiK

1
a + Kh

aω
1([Xh,Xi]) − K1

hω
h([Xa,Xi])

0 = XaK
l
l − XlK

l
a + Kh

aω
l([Xh,Xl]) − Kh

l ω
l([Xh,Xa]) − Kl

hω
h([Xa,Xl])

0 = X1K
j

2 − X2K
j

1 + Kh
1ω

j([Xh,X2]) − Kh
2ω

j([Xh,X1]) − K
j

2ω
2([X1, X2])

where a = 1, 2, 3 � i � m, j �= 2 and 3 � l � m.

Note that the only components of the vector field X appearing in the Jacobi equations
corresponding to �1

23 (or �1
12) are K1

h;Ki
a, a = 2, 3;Ki

i, 4 � i � m (or K1
h;Ki

a, a =
1, 2;Ki

i, 3 � i � m) and the rest of components remain completely free.

Corollary 3.10. A π -vertical infinitesimal symmetry of �1
23 (or �1

12) of the form Y =∑
i,j K

i
jE

i∗
j |s , Ki

j ∈ C∞(M), is a Jacobi field.

Proof. Substituting the conditions (31) (or (32)) into the Jacobi equations in theorem 3.8
(or theorem 3.9) and taking into account the equations for the extremals in corollary 2.4 (or
corollary 2.6), we have completed our proof. �

In the case of an integrable linear frame (X1, . . . , Xm), [Xi,Xj ] = 0, the Jacobi equations
can be integrated explicitly. In fact, on taking a system of coordinates (U ; xi) such that
Xi = ∂/∂xi , the equations in theorem 3.8 become

∂K1
i

∂xa
− ∂K1

a

∂xi
= 0 4 � i � m, a = 2, 3

∂K
j

3

∂x2
− ∂K

j

2

∂x3
= 0 j �= 2, 3

2

(
∂K1

a

∂x1
− ∂K1

1

∂xa

)
= −

m∑
l=4

(
∂Kl

a

∂xl
− ∂Kl

l

∂xa

)
a = 2, 3.
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From these equations we deduce the existence of functions Kj , j �= 2, 3, that parametrize
Jacobi fields as follows:

Kj
a = ∂Kj

∂xa
a = 2, 3 j �= 2, 3 K1

i = ∂K1

∂xi
+ 91

i 4 � i � m (40)

K1
1 = ∂K1

∂x1
+

1

2

m∑
i=4

(
∂Ki

∂xi
− Ki

i

)
+ 9 (41)

where Kj,91
i , 9 ∈ C∞(U) satisfy ∂91

i /∂x
a = ∂9/∂xa = 0, a = 2, 3, and the rest of

functions Ki
j are arbitrary.

Similarly the Jacobi fields for �1
12 along an integrable linear frame are parametrized as

follows:

Kj
a = ∂Kj

∂xa
a = 1, 2 K1

i = ∂K1

∂xi
+ 91

i 0 =
m∑
l=3

(
∂Kl

∂xl
− Kl

l

)
+ 9

where Kj,91
i , 9 ∈ C∞(U), j �= 2, 3 � i � m, satisfy ∂91

i /∂x
a = ∂9/∂xa = 0, a = 1, 2,

and the rest of the functions Ki
j are arbitrary.

3.3.2. Symmetries and Jacobi fields. Let s:M → P be an extremal of a Lagrangian density
�m defined onJ 1P . The vertical component of ap-projectable vector fieldY ∈ X(P ) along s is
the vector field Y v

s ∈ 3(M, s∗VP ) (cf section 3.3.1) defined by (Y v
s )x = Ys(x) − s∗(p∗(Ys(x))),

∀x ∈ M . As is well known (e.g., see [6, theorem 5.1], [24, theorem 3.11]), the vertical
component of an infinitesimal symmetry of �m along an extremal is a Jacobi field. The goal
of this section is to study when the converse of this property holds for the densities �1

23, �1
12.

Let us first consider the horizontal symmetries; that is, the symmetries of the form Z̃, where
Z ∈ X(M). We have

Z̃v
s =

(
f h
j

∂ui

∂xh
− uh

∂f i
j

∂xh

)
∂

∂xi
j

∣∣∣∣
s

Z = ui ∂

∂xi

with s = (X1, . . . , Xm), Xj = f i
j ∂/∂x

i . In the global basis (Er∗
l ) (see section 3.3.1), we also

have

Z̃v
s =

∑
r,l

Kr
l E

r∗
l |s Kr

l = fi
r

(
f h
l

∂ui

∂xh
− ∂f i

l

∂xh
uh

)
.

Hence
∂us

∂xr
=
(
f s
hK

h
l +

∂f s
l

∂xh
uh

)
fr

l. (42)

This system of m2 partial differential equations states the necessary conditions for a Jacobi
field Y = ∑

r,l K
r
l E

r∗
l |s , Kr

l ∈ C∞(M), to be the vertical component of a horizontal symmetry;

i.e., Y = Z̃v
s .

Theorem 3.11. Let Y be a π -vertical vector field on FM defined along an extremal s =
(X1, . . . , Xm) of �1

23 or �1
12. The necessary and sufficient conditions for the system (42) to be

completely integrable are the following:

(1) The extremal s = (X1, . . . , Xm) admits a Lie algebra structure (see proposition 2.8):
[Xj,Xk] = cijkXi .

(2) The intrinsic coefficients Ki
j of Y satisfy the following linear system of PDEs:

XqK
p
r − XrK

p
q + c

p

qhK
h
r + c

p

hrK
h
q + chrqK

p

h = 0 ∀p, q < r.
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Then, Y is the vertical component of a horizontal symmetry and, hence, it is a Jacobi field.

Proof. From the very definition, the system (42) is completely integrable if given a point x ∈ M

and arbitrary scalars λi , there exists a solution ui such that ui(x) = λi . Taking derivatives
in (42) with respect to xq , q < r , and imposing the symmetry conditions of the second partial
derivatives, after substituting their values deduced from (42) for ∂uh/∂xq , ∂uh/∂xr , we obtain(
∂f s

h

∂xq
Kh

l + f s
h

∂Kh
l

∂xq
+

∂2f s
l

∂xh∂xq
uh +

∂f s
l

∂xa

(
f a
i K

i
j +

∂f a
j

∂xh
uh

)
fq

j

)
fr

l

+

(
f s
hK

h
l +

∂f s
l

∂xh
uh

)
∂fr

l

∂xq

=
(
∂f s

h

∂xr
Kh

l + f s
h

∂Kh
l

∂xr
+

∂2f s
l

∂xh∂xr
uh +

∂f s
l

∂xa

(
f a
i K

i
j +

∂f a
j

∂xh
uh

)
fr

j

)
fq

l

+

(
f s
hK

h
l +

∂f s
l

∂xh
uh

)
∂fq

l

∂xr
.

Evaluating at x we obtain an equation for polynomials of degree 1 in the variables ui(x). Hence
the respective coefficients must coincide. As x is any point in M , we obtain the following
relations:(

∂2f s
l

∂xh∂xq
+

∂f s
l

∂xa

∂f a
j

∂xh
fq

j

)
fr

l +
∂f s

l

∂xh

∂fr
l

∂xq

=
(

∂2f s
l

∂xh∂xr
+

∂f s
l

∂xa

∂f a
j

∂xh
fr

j

)
fq

l +
∂f s

l

∂xh

∂fq
l

∂xr
. (43)(

∂f s
h

∂xq
Kh

l + f s
h

∂Kh
l

∂xq
+

∂f s
l

∂xa
f a
i K

i
jfq

j

)
fr

l + f s
hK

h
l

∂fr
l

∂xq

=
(
∂f s

h

∂xr
Kh

l + f s
h

∂Kh
l

∂xr
+

∂f s
l

∂xa
f a
i K

i
jfr

j

)
fq

l + f s
hK

h
l

∂fq
l

∂xr
. (44)

Equation (43) imposes a condition on the linear frame. Let (ωi) be the dual coframe. Let us fix
a point x ∈ M and let us consider the change of coordinates x̄j = ai

j xi , where (aj
i) = (ai

j )
−1

and ai
j = f i

j (x). Then, Xj = f̄ h
j ∂/∂x̄

h, with f̄ h
j = ai

hf i
j , f̄ h

j (x) = δhj . Expressing (43) in
the new coordinates, we have

(aq
bar

c − ar
baq

c)ah
das

l

(
f̄ e
c

∂2f̄ l
e

∂x̄b∂x̄d
+

∂f̄ l
e

∂x̄d

∂f̄ e
c

∂x̄b
+ f̄ t

b f̄
e
c

∂f̄
p
t

∂x̄d

∂f̄ l
e

∂x̄p

)
(x) = 0.

Multiplying this equation, first by ah
a as

k and summing over h, s, and then by a
q

i a
r
j and summing

over b, c, yields(
∂2f̄ k

j

∂x̄a∂x̄i
+

∂f̄ k
e

∂x̄a

∂f̄ e
j

∂x̄i
+

∂f̄ k
j

∂x̄p

∂f̄
p

i

∂x̄a

)
(x) =

(
∂2f̄ k

i

∂x̄a∂x̄j
+

∂f̄ k
e

∂x̄a

∂f̄ e
i

∂x̄j
+

∂f̄ k
i

∂x̄p

∂f̄
p

j

∂x̄a

)
(x)

or equivalently (Xa(ω
k([Xi,Xj ])))(x) = 0, ∀x ∈ M . Therefore the functions ωk([Xi,Xj ])

are constant. Hence, if the system (42) is completely integrable, then s admits a Lie algebra
structure.

Finally, writing equations (44) in a coordinate system (U ; xi) such that f i
j (x) = δij (i.e.,

(Xk)x = (∂/∂xk)x) and evaluating them at x, we obtain(
Kh

r

∂f s
h

∂xq
+

∂Ks
r

∂xq
+ Kh

q

∂f s
r

∂xh
+ Ks

h

∂fr
h

∂xq
− Kh

q

∂f s
h

∂xr
− ∂Ks

q

∂xr
− Kh

r

∂f s
q

∂xh
− Ks

h

∂fq
h

∂xr

)
(x) = 0
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i.e.,

(XqK
s
r − XrK

s
q + Kh

r ω
s([Xq,Xh]) + Kh

qω
s([Xh,Xr ]) − Ks

hω
h([Xq,Xr ]))(x) = 0.

�
We remark that the conditions (2) in theorem 3.11 are equivalent to saying that the functions

X(1)Lp
qr vanish along j 1s, as follows from equations (39).

Corollary 3.12. A Jacobi vector field Y along an extremal admitting a Lie algebra structure
s = (X1, . . . , Xm) of �1

23 (or �1
12) is the vertical component of a horizontal symmetry if and

only if it satisfies the equations in theorem 3.11–(2) except for the following systems of indices:
(p = 1; q = 2, 3; 4 � r � m), (p = q = 1; r = 2, 3), (p �= 2, 3; q = 2; r = 3) (or
(p = 1; q = 1, 2; 3 � r � m), (p = q = 4; r = 1, 2), (p �= 1, 2; q = 1; r = 2)).

3.4. Pre-symplectic structure

Let �m be a Lagrangian density on an arbitrary fibred manifold p:P → M and let C be the
Poincaré–Cartan form associated with �m. Let X, Y ∈ TsS(U) be Jacobi vector fields defined
along an extremal s ∈ S(U) of �m. Then, d[(j 1s)∗(iY (1) iX(1) dC)] = 0 (e.g., see [6]); that is,
the (m − 1)-form iY (1) iX(1) dC is closed along j 1s. The alternate bilinear map taking values in
the closed (m − 1)-forms:

(ω2)s : TsS(U) × TsS(U) −→ Zm−1(U) (ω2)s(X, Y ) = (j 1s)∗(iY (1) iX(1) dC)

is thus called the pre-symplectic structure associated with �m.

Proposition 3.13. Let s = (X1, . . . , Xm):U → FM be an extremal of �1
23 with dual coframe

(ω1, . . . , ωm), and let X = ∑
i,j K

i
jE

i∗
j |s , Y = ∑

i,j ϒ
i
jE

i∗
j |s be two Jacobi fields. Then, the

pre-symplectic structure associated with �1
23 is given by

(ω2)s(X, Y ) =
∣∣∣∣∣∣
iX2ω iX3ω iXh

ω

ϒ1
2 ϒ1

3 ϒ1
h

Kh
2 Kh

3 Kh
h

∣∣∣∣∣∣ +

∣∣∣∣∣∣
iX2ω iX3ω iXh

ω

ϒh
2 ϒh

3 ϒh
h

K1
2 K1

3 K1
h

∣∣∣∣∣∣
where ω = ω1 ∧· · ·∧ωm. Similarly, the pre-symplectic structure associated with �1

12 is given
by

(ω2)s(X, Y ) =
∣∣∣∣∣∣
iX1ω iX2ω iXh

ω

ϒ1
1 ϒ1

2 ϒ1
h

Kh
1 Kh

2 Kh
h

∣∣∣∣∣∣ +

∣∣∣∣∣∣
iX1ω iX2ω iXh

ω

ϒh
1 ϒh

2 ϒh
h

K1
1 K1

2 K1
h

∣∣∣∣∣∣ .
Proof. As C1

23 projects onto FM (see (20)), the formula (37) yields

iY iX dC1
23 = xj

aK
a
k iYEk

j (L
1
23) − xj

aϒ
a
k iXEk

j (L
1
23) + ϑ

j

k ∧ iY iXEk
j (L

1
23).

Pulling this equation back along s, we obtain

s∗(iY iX dC1
23) = (−1)l det(fd

c){Ka
kf

j
a f

l
i (δ

k
3ϒ

i
2 − δk2ϒ

i
3)fj

1 − ϒa
k f

j
a f

l
i (δ

k
3K

i
2 − δk2K

i
3)fj

1

− f j
a f

b
i (K

a
kϒ

i
h − ϒa

k K
i
h)(δ

k
3f

l
2 − δk2f

l
3)(fb

1fj
h + fj

1fb
h)}vl

= (−1)l det(fd
c)

∣∣∣∣∣∣
f l

2 f l
3 f l

h

ϒ1
2 ϒ1

3 ϒ1
h

Kh
2 Kh

3 Kh
h

∣∣∣∣∣∣ +

∣∣∣∣∣∣
f l

2 f l
3 f l

h

ϒh
2 ϒh

3 ϒh
h

K1
2 K1

3 K1
h

∣∣∣∣∣∣
 vl

and since iXi
ω = (−1)l det(fd

c)f l
i vl , we have completed our proof. The proof for �1

12 is
similar. �
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We remark that the only components of X, Y appearing in the expression of the pre-
symplectic structure are the same as those appearing in the Jacobi equations in theorems 3.8
and 3.9 (also see the remark following theorem 3.9).

Proposition 3.14. If a Jacobi field X defined along an extremal s of �1
23 (or �1

12) is an
infinitesimal symmetry of this density, then iX(ω2)s = 0. The converse is true if the frame
s = (X1, . . . , Xm) is integrable.

Proof. Let C(�) be the Poincaré–Cartan form of a Lagrangian density � on a fibred
manifold p:P → M . We know that for every p-projectable vector field X on P we
have LX(1)C(�) = C(LX(1)�). This property is usually referred to as the infinitesimal
functoriality of the Poincaré–Cartan form (see [6, 8]). As X is an infinitesimal symmetry,
we conclude that LXC

1
23 = 0 (or LXC

1
12 = 0). Hence, for every Jacobi field Y , we have

0 = iYLXC
1
23 = iY iX dC1

23 + iY diX C1
23 (or 0 = iYLXC

1
12 = iY iX dC1

12 + iY diX C1
12).

Moreover, as we proved in theorem 3.7, the Noether invariant of a π -vertical symmetry,
vanishes; i.e., iXC1

23 = 0 (or iXC
1
12 = 0), and the first part of the statement follows. As for

the second, we give the proof for �1
23, the other case being similar. Since [Xi,Xj ] = 0, once

a point x ∈ M has been fixed, there exists a coordinate system (xi) centred at x such that
Xi = ∂/∂xi . Using the same notation as above, in this system we have f i

j = δij , and from the
formula in the proof of proposition 3.13 we conclude that (ω2)s(X, Y ) = 0 if and only if the
following equations hold:

ϒ1
2K

1
3 − ϒ1

3K
1
2 = 0

−2ϒ1
1K

1
a + ϒ1

a (2K
1
1 +

m∑
h=4

Kh
h) +

m∑
h=4

(ϒh
aK

1
h − ϒ1

hK
h
a − ϒh

hK
1
a) = 0

m∑
h=4

(ϒ1
2K

h
3 − ϒ1

3K
h
2 + ϒh

2 K
1
3 − ϒh

3 K
1
2) = 0

with a = 2, 3. Assume that (ω2)s(X, Y ) = 0 for every Jacobi field Y . From
equations (40), (41), we deduce that the values ϒ

j
a (x), a = 2, 3, j �= 2, 3, ϒ1

h(x), ϒ
h
h (x),

4 � h � m, can be chosen arbitrarily. Hence the Ki
j satisfy the equations (31), thus providing

our conclusion. �

4. Lower dimensions

For dim M = 3, 4, the equations in corollaries 2.4, 2.6 can be integrated explicitly yielding
‘normal forms’ for the extremals. As diff M acts on the set of extremals of an invariant
Lagrangian (cf proposition 2.1), the general solution to the field equations is then obtained,
transforming these normal forms by an arbitrary diffeomorphism. Noether invariants defined
by horizontal symmetries are also calculated. Below we summarize these results.

4.1. dim M = 3

Let s = (X1, X2, X3) be an extremal of �1
23. Once a point has been fixed in the domain of s,

there exists an open coordinate subset (U ; xi) such that

X1 = f
∂

∂x1
+ g

∂

∂x2
+ h

∂

∂x3
Xj = gi

j

∂

∂xi
i, j = 2, 3

where f ∈ C∞(R), g, h, gi
j ∈ C∞(U), with f det(gi

j ) �= 0. Moreover, the Noether invariant
associated with X = ui∂/∂xi ∈ X(U) is s∗(iX̃C

1
23) = −f −2 dx1 ∧ du1.

Similarly, if s = (X1, X2, X3) is an extremal of �1
12, we have

X1 = ∂

∂x1
X2 = σ

∂

∂x2
X3 = α

∂

∂x1
+ β

∂

∂x2
+ γ

∂

∂x3
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where α, γ ∈ C∞(R), σ, β ∈ C∞(U), with γ σ �= 0, and the Noether invariant of X is
s∗(iX̃C

1
12) = γ−2(γ du1 − α du3) ∧ dx3.

4.2. dim M = 4

Let s = (X1, X2, X3, X4) be an extremal of �1
23. Once a point has been fixed in the domain

of s, there exists an open coordinate subset (U ; xi) such that

X1 = hi ∂

∂xi
X2 = ∂

∂x2
X3 = f 2 ∂

∂x2
+ f 3 ∂

∂x3

X4 = g2 ∂

∂x2
+ g3 ∂

∂x3
+ g4 ∂

∂x4

where hi, f j , gk ∈ C∞(U), j = 2, 3, k > 1, satisfy h1f 3g4 �= 0 and ∂((h1)2g4)/∂x2 =
∂((h1)2g4)/∂x3 = 0; that is, (h1)2g4 only depends on x1, x4. Moreover, the Noether invariant
associated with X = ui∂/∂xi ∈ X(U) is given by s∗(iX̃C

1
23) = −((h1)2g4)−1 dx1 ∧du1 ∧dx4

Similarly, if s = (X1, X2, X3, X4) is an extremal of �1
12, we have

X1 = ∂

∂x1
X2 = σ

∂

∂x2

X3 = (a1
1ξ

1 + a1
2ξ

2)
∂

∂x1
+ f 2 ∂

∂x2
+
∑
i=3,4

(ai
1ξ

1 + ai
2ξ

2)
∂

∂xi

X4 = (a1
1φ

1 + a1
2φ

2)
∂

∂x1
+ g2 ∂

∂x2
+
∑
i=3,4

(ai
1φ

1 + ai
2φ

2)
∂

∂xi

where σ, f 2, g2 ∈ C∞(U), and (ξ 1, φ1), (ξ 2, φ2) is the basis of the space of solutions to
the system ∂f/∂x2 = λf + µg, ∂g/∂x2 = αf − λg, determined by the initial conditions
ξ i(x1, 0, x3, x4) = δi1, φi(x1, 0, x3, x4) = δi2, i = 1, 2, where the functions α, λ, µ ∈ C∞(U)

are arbitrary and ah
i , h = 1, 2, i = 1, 3, 4, satisfy

∂(a1
1ξ

1 + a1
2ξ

2)

∂x1
= ∂(a1

1φ
1 + a1

2φ
2)

∂x1
= 0

∂ah
i

∂x2
= 0

∂δ

∂x1
= 0 δ =

∣∣∣∣ a3
1 a3

2

a4
1 a4

2

∣∣∣∣ .
In this case, the Noether invariant is

s∗(iX̃C
1
12) = δ−2

(∣∣∣∣ a3
1 a3

2

a4
1 a4

2

∣∣∣∣ du1 +

∣∣∣∣ a4
1 a4

2

a1
1 a1

2

∣∣∣∣ du3 +

∣∣∣∣ a1
1 a1

2

a3
1 a3

2

∣∣∣∣ du4

)
∧ dx3 ∧ dx4.
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21 1432–8
[20] Luo Y, Shao M X and Zhu Z Y 1998 Diffeomorphism invariance of geometric descriptions of Palatini and

Ashtekar gravity Phys. Lett. B 419 37–9
[21] Marsden J E, Montgomery R, Morrison P J and Thompson W B 1986 Covariant Poisson brackets for classical

fields Ann. Phys., NY 169 29–47
[22] Marsden J E and Shkoller S 1999 Multisymplectic geometry, covariant Hamiltonians, and water waves

Math. Proc. Camb. Phil. Soc. 125 553–75
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